Muscle adaptations to hindlimb suspension in mature and old Fischer 344 rats.
نویسندگان
چکیده
We examined skeletal and cardiac muscle responses of mature (8 mo) and old (23 mo) male Fischer 344 rats to 14 days of hindlimb suspension. Hexokinase (HK) and citrate synthase (CS) activities and GLUT-4 glucose transporter protein level, which are coregulated in many instances of altered neuromuscular activity, were analyzed in soleus (Sol), plantaris (PI), tibialis anterior (TA), extensor digitorum longus (EDL), and left ventricle. Protein content was significantly (P < 0.05) lower in all four hindlimb muscles after suspension compared with controls in both mature (21-44%) and old (17-43%) rats. Old rats exhibited significantly lower CS activities than mature rats for the Sol, Pl, and TA. HK activities were significantly lower in the old rats for the Pl (19%) and TA (33%), and GLUT-4 levels were lower in the old rats for the TA (38%) and EDL (24%) compared with the mature rats. Old age was also associated with a decrease in CS activity (12%) and an increase in HK activity (14%) in cardiac muscle. CS activities were lower in the Sol (20%) and EDL (18%) muscles from mature suspended rats and in the Sol (25%), Pl (27%), and EDL (25%) muscles from old suspended rats compared with corresponding controls. However, suspension was associated with significantly higher HK activities for all four hindlimb muscles examined, in both old (16-57%) and mature (10-43%) rats, and higher GLUT-4 concentrations in the TA muscles of the old rats (68%) but not the mature rats. These results indicate that old age is associated with decreased CS and HK activities and GLUT-4 protein concentration for several rat hindlimb muscles, and these variables are not coregulated during suspension. Finally, old rat skeletal muscle appears to respond to suspension to a similar or greater degree than mature rat muscle responds.
منابع مشابه
A physiological level of clenbuterol does not prevent atrophy or loss of force in skeletal muscle of old rats.
Supraphysiological levels of clenbuterol (CL) reduce muscle degradation in both young and old animals; however, these pharmacological levels induce side effects that are unacceptable in the elderly. In this study, we tested the hypothesis that a "physiological" dose of CL (10 microg. kg(-1). day(-1)) would attenuate the loss of in situ isometric force and mass in muscles of senescent rats durin...
متن کاملSingle soleus muscle fiber function after hindlimb unweighting in adult and aged rats.
This investigation compared how hindlimb unweighting (HU) affected the contractile function of single soleus muscle fibers from 12- and 30-mo-old Fischer 344 Brown Norway F1 Hybrid rats. After 1 wk of HU, functional properties of single permeabilized fibers were studied, and, subsequently, the fiber type was established by myosin heavy chain (MHC) analysis. After HU, the relative mass of soleus...
متن کاملAge-related differences in apoptosis with disuse atrophy in soleus muscle.
Muscle atrophy is associated with a loss of muscle fiber nuclei, most likely through apoptosis. We investigated age-related differences in the extent of apoptosis in soleus muscle of young (6 mo) and old (32 mo) male Fischer 344 x Brown Norway rats subjected to acute disuse atrophy induced by 14 days of hindlimb suspension (HS). HS-induced atrophy (reduction in muscle weight and cross-sectional...
متن کاملSatellite cell regulation of muscle mass is altered at old age.
Muscle mass is decreased with advancing age, likely due to altered regulation of muscle fiber size. This study was designed to investigate cellular mechanisms contributing to this process. Analysis of male Fischer 344 X Brown Norway rats at 6, 20, and 32 mo of age demonstrated that, even though significant atrophy had occurred in soleus muscle by old age, myofiber nuclear number did not change,...
متن کاملSelected Contribution: Identification of differentially expressed genes between young and old rat soleus muscle during recovery from immobilization-induced atrophy.
After cessation of hindlimb immobilization, which resulted in a 27-37% loss in soleus mass, the atrophied soleus muscle of young but not old rats regrows to its mass before treatment. We hypothesized that during remobilization the mRNA levels of growth potentiating factor(s) would be present in the soleus muscle of young (3- to 4-mo-old) but absent in old (30- to 31-mo-old) Fischer 344 x Brown ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 82 6 شماره
صفحات -
تاریخ انتشار 1997